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Abstract
One-dimensional electronic conduction is investigated in a special case usually
referred to as the harmonic crystal, meaning essentially that atoms are assumed
to move like coupled harmonic oscillators within the Born–Oppenheimer
approximation. We recall their dispersion relation and derive a WKB system
approximately satisfied by any electron’s wavefunction inside a given energy
band. This is then numerically solved according to the method of K-branch
solutions. Numerical results are presented in the case where atoms move with
one- or two-modes vibrations; finally, we include the case where the Poisson
self-interaction potential also influences the electrons’ dynamics.

PACS numbers: 03.65.Sq, 02.30.Jr
Mathematics Subject Classification: 81Q05, 81Q20, 35L65, 65M06

(Some figures in this article are in colour only in the electronic version)

1. Introduction

1.1. Preliminaries

It is a familiar fact that electrons are able to move over long distances inside certain materials;
this phenomenon manifests itself, for instance, through the high electrical conductivity of
metals. However, even in the purest metals, electrons are influenced by the underlying lattice
made of the atoms constituting the crystal itself. A very reasonable assumption is to consider
the repartition of these atoms as periodic; such an idealization allows us to take advantage of
Bloch’s theory which explains how valence/conduction electrons can move rather freely and
have a well-defined (Bloch) momentum. Indeed, Bloch’s theorem is one example of coherent
electronic transport: in a perfect crystal at zero temperature, there is a great superposition of
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phase-coherent waves with similar wavenumbers which results in a frictionless flow inside
the material (at low densities, Pauli’s exclusion principle does not have very sensible effects).
These electrons move according to the energy bands thus can survive multiple scattering
events with the atoms without getting localized and accumulating somewhere. Unfortunately,
finite conductivity is observed in practice because no sample will be pure enough to be a
perfectly periodic lattice, and even if this idealization was realizable, vibrations due to thermal
excitation would perturb the picture. The effects of these vibrations constitute the main point
we want to study in this paper within a simplified framework.

We are interested in deriving approximate WKB solutions of certain Schrödinger equations
in one space dimension, where short-range scattering effects other than those considered in the
Bloch decomposition will be neglected. In other words, we shall work on ballistic transport
of electrons for which the most important long-range interaction is the Coulomb force. In
case one assumes translational invariance in two directions, three-dimensional objects can be
modelled to some extent by means of a one-dimensional equation. We shall follow these
ideas which have already been studied in former works [9–11]. However, we now go one step
further considering that atoms vibrate as ‘coupled harmonic oscillators’. The Hamiltonian for
one electron reads (see [1], p 430), with obvious notation,

Hfull = p2

2m
+

∑
α∈Z

P 2
α

2M
+

∑
α∈Z

Vions(|Xα − Xα−1|) +
∑
α∈Z

Vion−e−(|x − Xα|). (1)

Parameters (p, x,m) refer to some electron and (Pα,Xα,M)α to the collection of atomic
cores. One could also consider a cloud of electrons indexed by β ∈ Z and the first term in (1)
should be replaced by

∑
β∈Z

p2
β

2m
+

1

2

∑
β �=β ′

e2

|xβ − xβ ′ | .

Then Coulomb self-interactions may be treated via ‘mean-field’, which would lead to
some Hartree equation, cf [11]; this will be briefly considered in the numerical results of
section 4.3. But first, let us concentrate on the one-particle model (1). We shall assume the
following hypotheses to hold throughout the whole paper:

• ionic cores are coupled oscillators, i.e. Vions(|Xα − Xα−1|) = 1
2Mω2(Xα − Xα−1)

2;
• they are treated classically (Born–Oppenheimer approximation) because m

M
� 1;

• they influence electrons but not the opposite (there are no polarons, cf [1, 18]).

1.2. Modelling of ionic cores’ vibrations

Without Vions, ions would arrange periodically X̄α = 2πα, α ∈ Z, as in [9]; now, let us call
Uα(t) := Xα(t) − 2πα the displacement around these abscissae ‘at rest’. The cores’ equation
is decoupled thanks to our third hypothesis:

d

dt2
Uα(t) − ω2(Uα+1(t) − 2Uα(t) + Uα−1(t)) = 0.

As for the continuous wave equation, it can be solved by Fourier series:

Q(t, k) =
∑
α∈Z

Uα(t) exp(−ik2πα) ⇒ d

dt2
Q(t, k) = �(k)2Q(t, k).

The dispersion relation reads (see also [1])

�(k) = 2ω| sin(kπ)|, k ∈ B :=
]
−1

2
,

1

2

[
,
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with B being the Brillouin zone associated with the Bravais lattice for the ionic cores ‘at rest’.
Uα(t) can be written as a continuous summation of plane waves:

Uα(t) =
∫ 1

2

0
A(k) exp(i(k2πα − �(k)t)) + B(k) exp(−i(k2πα − �(k)t)).dk. (2)

The Schrödinger equation for the electron’s wavefunction ψ becomes accordingly,

ih̄∂tψ +
h̄2

2m
∂xxψ = Vper(x + Uα(εt))ψ, (3)

with Vper(x) � ∑
α Vion−e−(|x − X̄α|), which can be considered 2π -periodic and smooth;

the dimensionless parameter ε = T̄e−/T̄ions is defined as the ratio of characteristic times
for the movements of ions and electrons, respectively. This modelling has already been
encountered in several papers; let us quote [19, 22] where it is referred to as ‘the deformed
crystal’. Moreover, many studies have been made in the field of ‘incommensurate crystals’, see
[15, 17, 20], emphasizing the so-called modulated Kronig–Penney model. This is somewhat
an extreme case for which the potential given in (3) is no longer periodic thus the Brillouin
zone of the resulting crystal is reduced to a point. We believe that new methods are needed
for tackling such a problem of non-periodic homogenization which goes beyond the scope of
the present paper. Indeed, the present text deals only with perturbed potentials (as shown on
the right-hand side of (3)) endowed with some periodicity in the x variable.

2. WKB asymptotic expansions of wavefunctions

We assume the reader to be familiar with Bloch’s theory; a comprehensive presentation is
given in [1], see also [6, 7, 9, 13, 14]. In this section, we shall show that for simple
enough displacements (2) (typically with few vibration modes), it is possible to derive a WKB
approximation for the wavefunction ψ solution of (3) for smooth Vper. For simplicity, we
switch at once to ‘atomic units’ for which h̄ = m = e = 1 and seek a convenient ansatz as
variables are rescaled according to (t, x) → (εt, εx) with 0 < ε � 1; ε = 0 would mean that
phonon scattering acts instantaneously.

2.1. Bloch theory and the Eikonal equation

We are now basically interested in the following equation:

iε∂tψ +
ε2

2
∂xxψ = Ṽper

(
t,

x

ε

)
ψ, Ṽper(t, y) = Vper(y + u(t, y)), (4)

where y = x/ε is the microscopic variable, Ṽper is supposed to be C∞ in both variables, the
motion u is smooth and periodic in both its variables and Vper is 2π -periodic. The simplest case
where u is only endowed with a unique vibration mode is displayed in figure 1. Let us assume
that for all t, Ṽper(t, y)+2π/k = Vper(t, y); thus one can consider a slightly generalized Bloch
eigenvalue problem:

∀t ∈ R, − 1
2∂yy	n,κ(t, y)+Ṽper(t, y)	n,κ(t, y) = En(t, κ)	n,κ(t, y), (5)

for any t ∈ R
+ and 	n,κ(t, y) = exp(iκy)zn,κ (t, y) a Bloch state. We observe that we only

need y ∈]0, 2π/k[ and the Brillouin zone corresponding to Ṽper is smaller than B,

κ ∈ B̃ =
]
−k

2
,
k

2

[
, |k| � 1

2
.

Since there is no differentiation in time inside (5), standard results remain valid (see e.g.
[16]) and ensure that for any fixed t and κ ∈ B̃, there exists a complete set of eigenfunctions



10512 L Gosse

-1.0
0

1.0

V_per

0
2

4
6

8
10

12
14

16
y

0

10

20

30

40

50

t - time

Figure 1. Time evolution for periodic potential in (4) with Vper(y) = cos(y) and u(t, y) =
sin(ky + �(k)t), k � 0.02, ε = 1.

	n,κ(t, .) ∈ L2(0, 2π/k) with countably many eigenvalues E1(t, κ) < E2(t, κ) < · · · <

En−1(t, κ) < En(t, κ) < · · · depending smoothly on time. The set {En(t, κ); κ ∈ B̃} is called
the nth energy band whereas 	n,κ is an nth Bloch state having the form exp(iκy)zn,κ (t, y)

for a certain 2π/k-periodic modulation. Modulations can be normalized so as to form an
orthonormal base of L2(0, 2π/k) for each t > 0.

At this level, we introduce a WKB ansatz for ψ considering a two-scale amplitude:

A
(
t, x, y = x

ε

)
= A0(t, x, y) + εA1(t, x, y) + · · · ; A(t, x, y + 2π/k) = A(t, x, y).(6)

Plugging the approximation A(t, x, x/ε) exp(iϕ(t, x)/ε) inside (4) and balancing the O(1)
terms following carefully [6, 7, 13] can be shown to lead to a Hamilton–Jacobi equation for
the phase

∂tϕ + En(t, ∂xϕ) = 0. (7)

2.2. Derivation of the transport equation

The principal amplitude stems from balancing O(ε) terms and is usually handled by means of
the ‘Feshbach method’; see the paper [6] to which we refer for a detailed presentation of the
computation. Here we shall limit ourselves to specify the changes occurring in the derivation
because of the time dependence of Ṽper. Actually, everything proceeds as in appendix A of
[6], except for the last step that we explain now1: let us denote L the usual geometric optics
transport operator associated with the Bloch theory:

La := E′
n(t, ∂xϕ)∂xa + 1

2∂x(E
′
n(t, ∂xϕ))a,

where E′
n stands for the partial derivative with respect to κ . The principal amplitude is defined

as a0(t, x) such that there holds A0(t, x, y) = a0(t, x)zn,κ (t, y), for κ = ∂xϕ(t, x). From
(A.4)–(A.6) in [6], we obtain the following equation for a0:

∂ta0 + a0

∫ 2π/k

0
gn∂tgn.dy + E′

n(t, ∂xϕ)a0

∫ 2π/k

0
gn∂xgn.dy + La0 = 0, (8)

1 We shall use the same notations for easiness in reading.
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where gn(t, x, y) = zn,κ=∂xϕ(t,x)(t, y) and .̄ stands for complex conjugation. Now, as a
consequence of the modulation’s normalization, ‖zn,κ (t, .)‖L2(0,2π/k) = 1, we observe that the
first coefficient acting on a0 is purely imaginary,

∂t

∫ 2π/k

0
gngn.dy = 0 = 2 Re

(∫ 2π/k

0
gn∂tgn.dy

)
,

and since E′
n ∈ R, the next one as well. It remains to make use of the definition of gn, the

chain rule, and equation (7) to compute∫ 2π/k

0
gn{∂tgn + E′

n(t, ∂xϕ)∂xgn}.dy =
∫ 2π/k

0
zn,∂xϕ(t,x) ∂t zn,κ

∣∣
κ=∂xϕ(t,x)

.dy.

We denote this term β(t, x) ∈ iR; it identifies with a Berry phase [3], and stems from the
time dependence of the Bloch states. In case another slowly varying potential V (t, x)ψ

is added on the right-hand side of (4), one would get another phase shift too reading
∂xV (t, x)

∫ 2π/k

0 zn,∂xϕ(t,x) ∂κzn,κ

∣∣
κ=∂xϕ(t,x)

.dy ∈ iR as in [6, 7, 10]. Anyway, it now remains
to multiply the resulting equation (8) by ā0 and take its real part to derive the usual continuity
equation for |a0|2:

∂t |a0|2 + ∂x(E
′
n(t, ∂xϕ)|a0|2) = 0. (9)

All in all, we have shown that an approximate nth band solution for (4) reads

ψε(t, x) = a0(t, x) exp(iϕ(t, x)/ε)zn,∂xϕ(t,x)(t, x/ε), t � 0, (10)

and evolves in time according to the WKB system made of (7) and (9). A first consequence is
that an initial datum concentrated on a given band will necessarily give rise to an approximate
solution in the same band. Lattice vibrations are not supposed to make electrons’ trigger
interband transitions; hence from now on, we consider some electron moving according to
some energy band whose index n ∈ N is fixed.

2.3. ‘Lattice tracking’ phenomenon

Clearly, each primitive cell of the ‘perturbed lattice’ contains 1
|k| ∈ N atomic cores. We

modified the algorithm in [10], section 2.2 in order to compute numerically En(t, κ),	n,κ(t, y)

by means of a spectral method. We write

	n,κ(t, y) =
∑
�∈Z

	̂�
n,κ (t) exp(i(κ + k�)y), 	̂�

n,κ (t) =
∫ 2π/k

0
zn,κ (t, y) exp(−i�y).dy.

The same decomposition is carried out for the perturbed potential and one is led to
diagonalize a matrix Hκ similar to that in [10] with kinetic energy terms reading now
1
2 (κ + k�)2, � = −N, . . . , N . Modulations zn,κ are recovered by fast Fourier transform
(fft) of corresponding eigenvectors and they hold for some t ∈ R

+, n ∈ N:

En(t, κ) = Ê0(t)

2
+

∑
q∈N

∗
Êq(t) cos(2πqκ/k), Êq(t) = 4

∫ k
2

0
En(t, κ) cos(2πqκ/k).dκ.

Since there are 1/k atoms per period, bands ‘stick together’ and constitute clusters of 1/k (for
k small, there would be ‘bands of bands’ emerging inside a tiny Brillouin zone). In the ground
state, each of the 1/k modulations is peaked around the corresponding atom in the elementary
cell: see figure 2 where Ṽper(t, y) = cos

(
y + π

2 sin(ky + �(k)t)
)
. It is interesting to make a

link with a feature pointed out in [22], namely the tendency for the lattice to drag the electron
with its displacement motion, called ‘lattice tracking’. First, observe that even if supplying
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Figure 2. Two lowest modulations |zn,κ=0|2 for k = 0.5 and t = 0.1.
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Figure 3. Potentials (left) and lowest modulations |zn,κ=0|2 (right) for t = 0, 0.3.

the WKB system (7)–(9) with initial data such that a0 ≡ 1 and ∂xϕ ≡ 0, we would have
|ψε(t, x)|2 �= |ψε(t = 0, x)|2 because of the time dependence of zn,κ . In other words, a small
current is created from the motion of the atoms even if the macroscopic quantities remain
constant in time. In figure 3, we displayed the deformations of the five lowest modulations
with respect to the changes in the same potential Ṽper as in figure 2. According to [9],
section 3.2, this implies the dragging effect suggested in [22].
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3. Numerical approximation with K-branch solutions

This method has been originally introduced in [8, 21] following the seminal work by Brenier
and Corrias [5]. It is based on the remark that geometrical solutions to (7)–(9) can be recovered
by solving a rather simple system of nonlinear conservation laws through the moment closure
of a kinetic equation. This opens the way of using all the results from the numerical analysis
of this kind of problems instead of using the classical Lagrangian framework of ray-tracing
algorithms, which may ask for repetitive regridding procedures. Let us also note that the
inclusion of the Poisson self-consistent potential would not be easy within a ray-tracing
approach.

We do not plan to recall it completely; instead we refer to [9, 10] where it has been
explained how to extend it to the case where semi-classical dynamics are driven by energy
bands numerically obtained from Bloch’s decomposition. The inclusion of the Poisson term
for systems endowed with translational invariance in two directions has been described in [11]
and will be used in section 4.3. Here we just explain how to handle the time dependence of
the energy bands in the processing of the WKB system (7)–(9).

3.1. General procedure

It has been observed [4] that the geometric solutions of scalar conservation laws with a flux
E′

n(., u) � 0 can be recovered out of a kinetic problem,

∂tf + E′
n(t, ξ)∂xf = 0, f (t = 0, x, ξ) = H(u(t = 0, x) − ξ)H(ξ),

with H being the Heaviside function. Beyond breakup time, the form of f must express the
fact that several particles with different velocities can cross each other at the same point x.
Thus a more correct representation would be

f (t, x, ξ) =
K∑

j=1

(−1)j−1H(uj (t, x) − ξ), (11)

as long as no more than K-folds appear. A remarkable feature is that (11) can be obtained
from an entropy minimization process; this eventually led to the definition of K-multivalued
solutions in [5].

Definition 1. We call K-multivalued solution any measurable function f (t, x, ξ) ∈ {0, 1} on
R × R

+ × R
+ satisfying the following equation in the sense of distributions

∂tf + E′
n(t, ξ)∂xf = (−1)K−1∂K

ξ µ, f (t, x, ξ) =
K∑

j=1

(−1)j−1H(uj (t, x) − ξ), (12)

where µ is a nonnegative Radon measure on R × R
+ × R

+ and K ∈ N is given.

The set of uj (t, x)’s is called the K-branch entropy solution; as usual, moments
mi(t, x) = 1

i

∑K
j=1(−1)j−1uj (t, x)i−1, i = 1, 2, . . . , K can be computed, for which an

equivalence result holds.

Theorem 1. (Brenier and Corrias [5]). A measurable function f (t, x, ξ) =∑K
j=1(−1)j−1H(uj (t, x) − ξ) is a K-multivalued solution if and only if all the following

entropy inequalities hold for any θ, ∂K
ξ θ � 0:

∂t

∫
R

+
θ(ξ)f (t, x, ξ).dξ + ∂x

∫
R

+
E′

n(t, ξ)θ(ξ)f (t, x, ξ).dξ � 0. (13)

Equality holds in case ∂K
ξ θ ≡ 0, especially for θ(ξ) = ξ j , j = 0, 1, . . . , K − 1.
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We close this section mentioning that the map R
K 
 �m �→ �u is called the ‘finite Markov

moment problem’; this delicate inversion has been recently tackled in [12].

3.2. Moment systems and intensity recovery

Usingfft routines in 2D (t and κ or y), it is possible to obtain numerically good approximations
of the following periodic functions (Tper < +∞):

[0, Tper] × B̃ 
 t, κ �→ En(t, κ),

and,

[0, Tper] ×
[

0,
2π

k

]
× B̃ 
 t, y, κ �→ zn,κ (t, y).

The fact that we restricted ourselves to commensurate crystals is fundamental here. These
two representations would not hold in Fourier space without assuming that Ṽper is periodic in
both its variables. This leads to restrictions on k’s allowed to show up in (2). If one introduces
a velocity variable u = ∂xϕ in (7), then a scalar conservation law with a time-dependent flux
appears,

∂tu + ∂xEn(t, u) = 0, u(t = 0, .) = ∂xϕ(t = 0, .),

for which the multivalued (or geometric) solution is to be sought according to the moment
system (13). As soon as one completes this programme, the principal intensity |a0|2 can be
easily recovered; indeed, at any time t > 0, one deduces from (9) that

|a0|2(t, x) = |a0|2(t = 0, x0)

∣∣∣∣∂x0

∂x

∣∣∣∣ ,
and from (7) that x = x0 +

∫ t

0 E′
n(s, u(t = 0, x0)).ds = x0 +

∫ t

0 E′
n(s, u(t, x)).ds with u(t, x)

obtained by solving (13). In the homogeneous case, the most accurate way to derive the
intensity follows from∣∣∣∣∂x0

∂x

∣∣∣∣ =
∣∣∣∣ ∂x

∂x0

∣∣∣∣
−1

=
∣∣∣∣∣

1

1 + ∂xu(t = 0, x0)
∫ t

0 E′′
n(s, u(t, x)).ds

∣∣∣∣∣ ,
which leads to the expression

a0(t, x) = a0(t = 0, x0)√∣∣1 + ∂xu(t = 0, x0)
∫ t

0 E′′
n(s, u(t, x)).ds

∣∣ , x0 = x −
∫ t

0
E′

n(s, u(t, x)).ds.

4. Numerical results

We now aim to show results of K-branch solutions in the context of simple phonon scattering
via the WKB approach (7)–(9) and to compare them to direct computations of solutions to
(4) using the time-splitting Fourier schemes proposed in [2]. We shall try to show that the
smaller the ε, the closer the solutions’ observables become. However, only weak convergence
of observables can generally be hoped for [16], hence we shall look at the L1(R) norm of the
antiderivative of the difference between position densities:

x �→
∫ x

0

(
�ε

WKB(T , s) − |ψ(T , s)|2).ds, T ∈ R
+. (14)

This function can be expected to flatten as ε is decreased. �ε
WKB stands for the position density

obtained from the WKB ansatz (10). It has been sometimes necessary to filter numerically
the Fourier schemes; here we used a standard convolution recipe involving a Gaussian kernel
exp(−aξ 2), a ∈ R

+. 512 discretization points have been used for both algorithms.
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Figure 4. Time evolution of En (top) and |zn,κ=0|2 (bottom) for (15).

4.1. One wavenumber

We first consider the perturbed potential which is 4π -periodic:

Ṽper(t, y) = cos
(
y − π

6
sin(ky − t)

)
, ω = k = 1

2
. (15)

The corresponding Brillouin zone is therefore B̃ = [− 1
4 , 1

4

]
and figure 4 displays both the

first conduction band and its associated modulation |zn,κ=0|2. The n index corresponds to
the first conduction band, namely the first one with positive effective mass lying partially
above the potential well. As time t goes by, the band is slightly deformed and not just
translated. The initial data are of the form (10) with ϕ(t = 0, x) = cos(x − π)/10 and
|a0|2(t = 0, x) = exp(−(x − π)2)/π . We iterated up to T = 5 and the comparison between
position densities is shown in figure 5 for ε = 1/35. The agreement is very satisfying and one
even observes the weak convergence as ε decreases from 1/5 to 1/35 by checking the L1 norm
of (14). The following perturbed potential is still 4π -periodic, but slightly more involved,

Ṽper(t, y) = cos
(
y − π

6
(0.7 sin(ky − t) + 0.3 cos(ky − t))

)
, (16)

where ω = k = 1
2 . Results in T = 5 are shown in figure 6; once again, the agreement between

both computations can be considered satisfying especially for ε = 1/47.
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Figure 5. Position density for (15) in T = 5 and ε = 1/35 (left) and weak convergence as ε → 0
(L1(R) norm of (14)).
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Figure 6. Position density for (16) in T = 5 and ε = 1/35 (top) and ε = 1/47 (bottom). Figures
on the right are in log-scale.

4.2. Two different wavenumbers

We switch to the perturbed potential which is 12π -periodic:

Ṽper(t, y) = cos
(
y − π

10
(sin(y/2 − t) + sin(y/6 − �(1/6)t))

)
. (17)
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Figure 7. Three-branch velocity and intensity for (17) in T = 30 (top) and corresponding position
density for ε = 1/26, ε = 1/50 (bottom).

This case is difficult because the Brillouin zone is very small (k1 = 1
6 and k2 = 1

2 ); thus
(by smoothness) the bands are nearly flat and one must iterate for a long time to observe
the dynamics. Figure 7 displays the outcome in T = 30 of both WKB approach and direct
Schrödinger computations from the initial data (10) with ϕ(t = 0, x) = cos(x − π)/12
and |a0|2(t = 0, x) = exp(−(x − π)2)/π . We chose the two vibration modes k = 1

2 and
k = 1

6 because the resulting Ṽper is still a periodic function in y and t. Periodicity in t is
important if one does not want to store all values of En involved in the computation. The
agreement between position densities is less clear in this case; however, the two central spikes
are correctly located. Three-branch solutions are very good approximations of the ray-tracing
picture, see again figure 7.

4.3. Inclusion of the Poisson potential

We move back to the simple perturbed potential (15) but we include now repulsive self-
interaction effects between electrons. That is to say, we add a term VP (t, x)ψ on the right-hand
side of (4), where −∂xxVP = |ψ |2. As a consequence, it has not been possible to obtain a
breakup and multivalued K-branch solutions for K > 1. The perturbed potential and the initial
data are the same as in section 4.1 but iterations went only up to T = 3. It was not possible to
display a ray-tracing solution in this weakly nonlinear case, thus we just observe a quite good
equivalence between position densities in figure 8. The L1(R) norm of (14) decreases slowly
indeed with ε → 0, as shown in figure 9, whereas strong L1 convergence does not seem to be
visible.
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Figure 8. Three-branch velocity and intensity for (17) in T = 3 (top) and corresponding position
density for ε = 1/35 (bottom).
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Figure 9. Decay of the L1(R) norm of (14) for ε ∈ [1/65, 1/5].

5. Conclusion

We have proposed an original two-scale WKB technique adapted to electronic conduction in
1D harmonic crystals, see (7)–(10). A numerical processing has been presented together with
a validation against direct Schrödinger computations. The main shortcoming in this general
approach is that in case B̃ becomes really small (that is to say, many small wavenumbers are



Semiclassical WKB approximation of the D harmonic crystal 10521

present in (2)), band gaps are likely to shrink so much as to allow electrons to perform interband
transitions rather easily, and the assumption of staying inside a given band leading to (10) is
likely to fail. Still, our ansatz (10) is more precise compared to standard phonon modelling
as a collision term in a kinetic equation. Indeed, one central hypothesis in this last approach
is to assume that the resulting scattering effects are instantaneous; in other terms, ε = 0 and
an adiabatic decoupling takes place. A major open problem lies in extending our analysis
in section 2 to quasi-periodic potentials; this would match the so-called incommensurate
quasi-crystals, [15, 20].
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